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I. INTRODUCTION

The essential features of free vibration of unpressurized cylindrical
shells have been well established by previous investigations of infinitely
long [1] and finite-length (2,3] cylinders. Cylindrical shells can vibrate
with various combinations of axial and circumferential waves. For any given
wave pattern, three distinct natural frequencies are possible depending on
the dominant amplitude (radial, axial, or circumferential) of the motion [I].

According to Arnold and Warburton (1], investigations of cylindrical
shells can proceed either directly to a set of differential equations via
equilibrium considerations of a small element or indirectly by assuming vibra-
tion forms compatible with the given end conditions, deriving expressions for
strain and kinetic energies, and using the Lagrange dynamical equations to
arrive at the differential equations. Discrepancies between the results of
various investigations can be traced to different approximations utilized in
relating strains to the extensional strains of the middle surface and its cur-
vature changes; for an accounting of the relations used by various authors,
see the review presented in Reference [3].

Previous investigations of cylindrical shell vibrations have been limited
to unpressurized vessels. The purpose of this study was to assess the effect
of pressurization on the natural frequency. The analysis is based on a sim-
plified energy method using the assumption that radial displacements dominate.
The zero-pressure natural frequency is assumed to be given either by existing
predictive techniques or measurements.
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II. ANALYSIS

Figure 1 illustrates the cylinder considered in this treatment. The ends
of the cylinder z - 0 and z - L are assumed to remain circular during vibra-
tion, and the middle surface is presumed to move in a strictly radial direc-
tion; thus, the displacements of the middle surface are

u = U cos (n8) sin (mrz/L) (1)

V w- O 0

where n is the number of circumferential waves and m is the number of axial
halfwaves; U is periodic in time

U - Uo sin wt . (2)

MIDDLE SURFACE

Figure 1. Cylinder.

The total potential energy of the cylinder-fluid system is the sum of the
cylinder bending and stretching energies and the fluid expansion energy. In
computing the energy of cylinder stretching, it is assumed that tension is due
to internal pressure only, and per unit length is pR in the circumferential
direction and pR/2 in the axial direction; fluid pressure p is assumed con-
stant. Upon deformation the length of the middle surface increases by
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2w
Ale - f ([:R+u) 2 + (cau/3) 2 11/ 2 - R)de (3)

0

in the S-direction. The integrand of this expression can be expanded and,
upon retention of the first-order terms only (for small displacements u/R 4 i
and slopes 3u/RaO'4 1), approximated by

2wALe"f [u + L_ (•)2 ]dO 
(4)

0

Similar treatment of extension parallel to the z-axis yields

2w

Atz f 1  au/ az)2 dz (5)
0

for extension of a generator of the cylinder. Equations (4) and (5) can be
used to form the epxression for stretching energy

2w L _

27 L 2 + 2
V1 f f pu + )2]Rddz f f 4 ()2 dedz . (6)VS f f Pu + R_ 8 4 az

0 0 0 0

The volume of fluid inclosed by the cylinder increases during deformation
by the amount

2w L
f f uRd Bdz, (7)
0 0

thus, the fluid expansion energy is given by

2w L
VE-- f f puRdedz . (8)

0 0

Equations (6) and (8) can be combined to yield the sum of the stretching and
expanison energies as

VS + VE -2w L 1 p- 2 + - (-z)2]Rd edz (9)

VS ~ f VE_ f6J J 4 3z(9
0 0

or, the displacement of equation (1) can be used

VS + VE - w Ln 2 U2 p[l + (X/n) 2 ]/4 (10)

where

X mw R/L

3



The potential energy of cylinder bending VB is calculated from the
expression

2w7 L 6/2 Ei -0) 2Razx (1
VB- f f _f2 [ez2 + ee2 + 2aezee + (-- Y Oz]d~zx

0 0 /2 2(l--2) 2

where, following Love [5], it has been assumed that normal stress in the
radial direction, arr, is small and the shear strains Yre and Yrz are zero.
The strains ez and eq are presumed to be linear functions of x, with zero
midplane strain; thus [5]

ez .- x(a 2 u/ax2 ) = (m7r/L) 2 Ux cos (nO) sin(m7rz/L) (12)

e 8 - -x(a2u/a6 2 )/R 2 - (n/R) 2 Ux cos (nO) sin(mirz/L)

where the displacement Equation (1) has been invoked. These strain expres-
sions may be substituted into Equation (11) resulting in the expression

VB - -ELU 2  1 (.)3 (X2 +n 2 ) 2  
. (13)

4(1_o2) 12 R

The total kinetic energy of the cylinder-fluid system is the sum of the
kinetic energy of the cylinder

2w L R+ &/2
T3 2 L R( u2 rd-dzdr pRL (U3)26 (14)

c-(.f 2 r2dZddr
o o R-6/2

and the kinetic energy of the fluid (Equation (A-7). Thus,

T = Tc + Tf = tLRPeCU) 2 6/4 (15)

where pe is an "equivalent density" defined by

Pe = P + Rpf/(n6) . (16)

Equations (10) and (13) may be added to yield the total potential energy
of the cylinder-fluid system; thus,

V -wEL 2  63 (X 2+n 2 ) 2 + • Ln 2 U2 p[l+(X/n) 2 ] (17)

4(1-a2) 12R3

Equations (17) and (15) may then be utilized in Lagrange's equation

i-t ( rT/l) - aT/au - -av/au (18)

to yield the expression
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R6Pe _ + (,2+6n2)6 •(19)2 (1-o2) 2

For periodic oscillations, Equation (2), this expression reduces to

L)~R6 ~ E 6 3 20
e2R62e =- E (1) (X2 +n 2 ) 2 + p(X 2 +n 2 ) (20)12(1-02)R

At zero gage pressure, p - 0, Pe = p, and Equation (20) reduces, in that
instance, to

2R6p E 12(1-) 3 (x 2 +n 2 ) 2  (21)

where ab denotes the unpressurized oscillation frequency. Equation (20) can
be conveniently nondimensionalized by division by Equation (21); after some
manipulation the results are

w2 - w,2 P {+ 2 (R)3 (1-02) (22)Pe n2 E 6 (X/n)2+I

This expression can be simplified, with the aid of Equation (16) to the form

W Rf E WO(mRnL) 2 + (23)

The derivation of Equation (23) is based on the assumption that the num-
bers of axial and circumferential waves do not depend on pressure. The zero-
pressure frequency wo is considered to be given either by experiment or some
predictive technique other than Equation (21). Equation (23) indicates that
cylinder pressurization tends to increase the frequency through the increased
strain energy with a moderating influence of the kinetic energy of the fluid.
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III. EXPERIMENTS

A series of oscillation frequency measurements were made on a small gas
storage bottle, typical of those used as pneumatic storage supplies on certain
missiles [4]. Figure 2 shows the bottle and the dimensions of the bottle.
Qualitative preliminary measurements were conducted to determine the numbers
of axial and circumferential waves existing during free vibration; View A of
Figure 3 shows the test setup used. An oscillator was used to drive a small
loudspeaker placed adjacent to the bottle and adjusted to a frequency which
produced a peak output of an accelerometer glued to the bottle. By moving the
accelerometer axially and circumferentially, and by comparing its output to a
second accelerometer fixed to the bottle, the node lines were determined. Two
circumferential waves (n - 2) and one axial half-wave (m = 1) were found to
exist for pressures from atmospheric up to 34.5 MPa (5000 psig) for nitrogen
and helium gases. For the bottle tested, mwR/L = 0.576 and 6/R = 0.0867.
According to Arnold and Warburton [11 these ratios indicate that the minimum
frequency should occur for n - 2, as observed.

oN IT, mi

110mm

Figure 2. Gas storage bottle.

Frequency measurements were conducted as shown in the test setup in View
B of Figure 3. Vibration of the bottle was initiated by sharply tapping it
with a small hammer. The output of a microphone placed adjacent to the bottle
was recorded on an oscillograph. The measurements were completed by manually
counting the cycles in a specified time, short enough (0.100 s) to avoid si'-
nal dropout due to damping. Tests were made for nitrogen and helium gases
over a ringe of pressures from 0-34.5 MPa gage. Pressurization between mea-
surements caused significant temperature changes. Great care was taken to
cool the cylinder down to room temperature (20 *C) via a water bath prior to
each measurement.

Measurement uncertainties are estimated as two parts in two hundred for
frequency (- 50 Hz) and 0.5 MPa for pressure. The dimensions of the storage
bottle shown in Figure 2 have an uncertainty of 0.025 mm.
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IV. RESULTS-DISCUSSION

The results of the frequency measurements are presented in Figure 4 for
both helium and nitrogen. The zero-pressure frequency was 3550 Hz for each.
At the highest pressures for which data was taken (- 34 MPa), the frequency
for helium increased by approximately 26 percent over the unpressurized case;
nitrogen had a corresponding increase of 16 percent.

5000

N

4000

3000 I I
0 10 20 30 40 50

P,MPa

Figure 4. Variation of frequency pressure.

Also shown in Figure 4 is the variation in vibration frequency with pres-
sure as predicted by Equation (23), using the measured zero-pressure frequency
i. Helium and nitrogen densities were calculated with a Van der Waals prin-

ciple of corresponding states [6]. Agreement with the measurements is excel-
lent, differing by less than 4 percent of the frequency increases experienced
at the higher pressures and well within the estimated uncertainty of the mea-
surements. Note that the frequency predicted by Equation (23) is somewhat
sensitive to the thickness of the bottle 6; for an uncertainty of 0.025 mm the
predicted frequencies could have a variation of + 30 Hz at the higher pres-
sures.

The agreement between the measurements and Equation (23) might seem some-
what fortuitous considering the rather restrictive simplifications made in the
analysis. However, the more comprehensive analysis of Arnold and Warburton
[1] indicates that for axial-wave factors X < 0.60, thickness ratios 6/R >
0.03, and n > 2, the strain energy in an unpressurized cylinder is almost
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entirely composed of bending, and that the lowest frequency of vibration (of
three possible) is comprised mainly of radial motion; these assumptions were
made at the outset of this analysis, which should not be extrapolated beyond
the limits quoted.

The conditions assumed in the analysis above differ from the tests per-
formed in one important aspect, the end conditions imposed on the cylinder.
The displacements of Equation (I) are representative of the condition of
"freely-supported" ends, since the test cylinder had hemispherical end caps, a
condition somewhere between freely-supported and fixed ends. In their experi-
ments on cylinders with solid and flanged ends, Arnold and Warburton [2] pro-
posed a correlation based on appropriately modified axial-wave factors. Their
correlation yields an accurate zero-pressure frequency if the hemispheric-end
capped cylinder is considered as solid with end thickness equal to cylinder
thickness and with length equal to the cylinder length plus end caps. In this
manner, %b is estimated at 3560 Hz, which is remarkably close to the measured
value of 3550 Hz.

Equation (23) indicates that for circumferential waves n > 2, the effect
of pressurization on frequency should be small except at very high pressures.
The notion that internal fluid pressure in a container does not affect the
frequency [2], although a good guide for most applications, is not precisely
correct and could lead to significant underestimations of natural frequencies
of high pressure storage vessels under appropriate conditions.

The original impetus for this study came from a need to nondestcuctively
find the fluid pressures inside small, high pressure, sealed containers such
as those used on missiles. A quick and simple method is needed to identify
those containers which have lost their charge through leakage without time
consuming and costly disassembly of the system. This study gives such a meth-
od for containers similar to those shown in Figure 2. If natural frequency
measurements could be made on the containers, pressures could be easily esti-
mated to an accuracy of - 0.7 MPa, sufficient to determine the operational
status of the containers.

9



V. SUMMARY

This study is summarized as follows:

1. Internal pressurization of thin cylinders can significantly increase
vibration frequencies in those circumstances where the strain energy in the
unpressurized cylinder is mainly bending. The effect is diminished as the
number of circumferential waves is increased and is enhanced with decreasing
fluid density.

2. Natural frequencies of vibration of pressurized thin cylinders with
6/R > 0.03 and X - mwR/L < 0.60 are well correlated by Equation (23) over a
range of pressures from 0.34 MPa, for helium and nitrogen gases.

3. Internal pressures in thin cylinders with 6/R > 0.03 can be determined
via frequency measurements ("ping test") to an accuracy of approximately 2
percent at pressures up to 34 MPa.
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GLOSSARY

Term Nomenclature

er, e 6 , e. Radial, circumferential, and axial strain

E Young's modulus, 2.07 x 105 MPa

In Modified Bessel function, first kind, nth order

A£0( Circumferential extension of the middle surface

ALz Axial extension of the middle surface

L Length of cylinder

m Number of axial half-waves

n Number of circumferential wdves

p Pressure

r,0,z Radial, circumferential, and axial coordinates

R Radius of middle surface

t Time

T Kinetic energy; ( )c and ( )f denote cylinder
and fluid, respectively

u, v, w Radial, circumferential, and axial displacements of
middle surface

U Amplitude of radial displacement

V Potential energy; )B, ( )S, )E denote
bending, stretching, and expansion, respectively

x Radial distance from middle surface

a General parameter

6 Cylinder thickness

Yre, '1ez, 'zr Shear strains in r-6, 6-z, and z-r planes, respec-
tively

v Distance normal to surface

v Denotes a unit normal

SAxial wave factor, miTR/L

r(Q) Gamma function

W Frequency; ( )o refers to zero-pressure case

* Velocity potential of fluid in cylinder

p Density of cylinder

Pf Fluid density

Pe Equivalent density defined by Eqn. (16)

a Poisson's ratio, 0.286

Superscripts

Ce) Denotes differentiation with respect to time

( )' Denotes ordinary derivative
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APPENDIX

KINETIC ENERGY OF FLUID IN A VIBRATING CIRCULAR CYLINDER

The flow field interior to the cylinder is assumed to be irrotational and
to behave incompressibly, since only small pressure variations are anticipated
with the small amplitude vibrations considered here. The kinetic energy of
the fluid is given in terms of the velocity potential * as

1 30 1 L 2w 3

Tf P •- Pff - dA = p- f f * rd Odz (A-i)
A 0

With the approximation that the unit normal v to the surface is essentially
radial, for small displacements, ý/3v = 3$/ar and, for thin cylinders with
6 < R, Equation (A-I) can be approximated by

L 2r
Tf - f f _f 0 Rdedz (A-2)

0 0 3

The integrand Equation (A-2) is evaluated at r - R, the middle surface of the
cylinder.

The function

SIn(ml~r/L)

:-1ULm sin (m'rz/L)cos(nB) In(mnR/L) (A-3)Mir I'mRL

satisfies Laplace's equation in the cylindrical region and the boundary con-
dition

7r (R, 6,z) - Usin(mirz/L)cos(n6) (A-4)

at the surface r - R, in agreement with the displacement given in Equation
(1). Further, the net volume flow rate past the surfaces z = 0 and z - L,

2n
q - J f -2- rdOdr (A-5)

0 0

is zero; thus, the velocity potential of Equation (A-3) represents the veloc-
ity field within a cylinder capped by fixed ends (of any shape).

Substituting Equation (A-3) into Equation (A-i), results in expression

T (U) 2 L3  In(mrR/L)
Tf 4 mw I6(mrR/L) (A-6)

A-I



Equation (A-6) can be simplified with the recurrence relation

n•• = nI• n(a) (A-7)

and, for small arguments, the expression

In(a) (/2)n-8)

"- r(n+l)

to the form,

In(m7rR/L) i m A-

Il(mirR/L) - 2L r (n+l) nL nL (A-9)
mi•R 'r (n) m A

Equation (A-6) can thus be written as

Tf = r pf RL2(U)2/ 4 n (A-1)

It is interesting to note that Equation (A-10) is identical to the results
obtained by summing the kinetic energies of small axial slices of the cylin-
drical region, ignoring completely the z-component of velocity in each.
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